Шрифт:
Интервал:
Закладка:
По этой причине «Хаябусу-2» запустили к астероиду иного типа. Ее целью стал астероид класса C под названием Рюгу. К этому классу относятся углеродистые астероиды, которые, как считается, претерпели относительно мало изменений с момента образования Солнечной системы 4,56 млрд лет назад. Сейчас Рюгу движется по орбите вокруг Солнца между Землей и Марсом, однако в начале своего пути он, вероятнее всего, был частью основного скопления астероидов класса C на дальней, ледяной стороне пояса астероидов.
Запуск «Хаябусы-2» состоялся в начале декабря 2014 года. Запланированное время приближения станции к Рюгу — 2018 год. Так сказать, на пятки ей наступает другая космическая станция — «ОСИРИС-Рекс» (Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer, OSIRIS-REx), запущенная NASA осенью 2016 г. и направляющаяся к другому астероиду класса C под названием Бенну. Задача обеих станций — взять и доставить на Землю образцы. Это означает, что они не только будут передавать информацию об астероидах, но также вернутся на Землю с частицами, собранными с их поверхности. Как показывает опыт «Филы», посадка модуля на астероид, без чего получить образцы невозможно, представляет собой задачу колоссальной сложности. Но игра стоит свеч.
В найденных на Земле метеоритах со следами присутствия воды также содержится множество органических молекул. Таким образом, можно сделать смелое предположение о том, что при «жесткой» посадке на молодую Землю каменистые небесные тела приносили с собой не только воду, но и нечто, из чего могла зародиться сама жизнь. Поэтому образцы с астероидов Рюгу и Бенну помогут не только проверить гипотезу о происхождении земных океанов, но и пролить свет на самые первые шаги жизни на Земле.
Своим названием астероид Рюгу обязан японской народной легенде о рыбаке по имени Урасима Таро, который спас морскую черепаху от мучивших ее детей. По счастливому стечению обстоятельств черепаха оказалась дочерью повелителя морей. В награду за доброту Урасиме было позволено спуститься в подводный дворец Рюгу и провести там три дня с принцессой в человеческом обличье. Однако, вернувшись домой, Урасима обнаружил, что на самом деле он отсутствовал 300 лет. В смятении он открыл подаренную принцессой шкатулку. Из нее вырвалось облако дыма и окутало рыбака. Когда дым рассеялся, Урасима стал ветхим стариком — в шкатулке был его истинный возраст.
«Хаябуса-2» и «ОСИРИС-Рекс» вернутся на Землю в 2020 и 2023 гг. соответственно. Исследователи надеются, что, подобно шкатулке из Рюгу, в которой заключалась жизнь Урасимы, собранные образцы помогут нам разгадать секрет зарождения жизни на Земле.
Открытие 51 Пегаса b имело не самые приятные последствия для теорий образования планет.
Когда в 1995 г. она была провозглашена первой известной нам планетой, обращающейся вокруг звезды, подобной Солнцу, это не только положило начало новой эре открытий, но и нанесло удар по тогдашним планетологическим представлениям.
По правде говоря, 51 Пегаса b не была первой экзопланетой, открытой астрономами. Примерно за пять лет до ее обнаружения была найдена планета, обращающаяся вокруг останков мертвой звезды, называемой пульсаром. Но пульсар — это все-таки далеко не Солнце, так что доводов в пользу того, что такая планетная система не может походить на нашу, было хоть отбавляй. В случае с 51 Пегаса b найти аргументы против сопоставления было уже труднее: эта планета обращалась вокруг звезды, похожей на Солнце, но при этом совершенно не там, где следовало.
51 Пегаса b — газовый гигант. Ее масса как минимум вполовину меньше массы Юпитера, то есть она в 150 раз тяжелее Земли. При этом она располагается настолько близко к своей звезде, что год на 51 Пегаса b пролетает с головокружительной быстротой — за 4,2 земных суток. Для сравнения: даже Меркурию, ближайшей к Солнцу планете, требуется 88 дней, чтобы совершить полный оборот вокруг нашего светила, а период обращения Юпитера и вовсе составляет 12 полных земных лет.
Столь значительные отличия от Солнечной системы не согласуются с обеими основными теориями образования газовых гигантов, ведь согласно им формирование такой планеты должно проходить на большом расстоянии от звезды.
Чтобы набрать достаточную массу для захвата характерной для газового гиганта колоссальной атмосферы, планета должна формироваться за снеговой линией, где она будет увеличиваться в объеме за счет замерзших льдов. При этом она должна располагаться настолько далеко от звезды, чтобы во власти ее гравитации была достаточно большая область, обеспечивающая доступ к большому количеству планетезималей (в терминах главы 2, ее сфера Хилла должна быть большой). При формировании в результате неустойчивости диска планета должна располагаться еще дальше — за снеговой линией. Но 51 Пегаса b находилась так близко к своему светилу, что не просто не могла стать газовым гигантов. Более того, в условиях высоких температур, неизбежных при таком расположении, образование массивного твердого тела невозможно в принципе.
Еще более усугубило ситуацию то, что, как оказалось, 51 Пегаса b не была единичной аномалией. По мере того как число выявленных экзопланет росло, среди них обнаруживались все новые газовые гиганты, прижавшиеся к своим звездам.
Справедливости ради отметим, что практиковавшиеся методы наблюдения были нацелены скорее на обнаружение как раз таких горячих юпитеров, чем планет, похожих на Землю. В силу своей массивности и близости к звезде эти огромные миры вызывают максимальные колебания ее лучевой скорости. При коротком периоде обращения они напоминают о своем существовании каждые несколько дней. То есть горячие юпитеры стали легкой добычей для охотников за экзопланетами. Однако признание этого факта не означает, что они не существуют. Позже было подсчитано, что приблизительно 1% звезд соседствуют с собственным горячим юпитером. Теория образования планет без них невозможна.
Логически объяснить их существование можно было только одним способом: если такая планета не могла сформироваться там, где она находилась, она должна была появиться на свет в другом месте, дальше от звезды, а затем переместиться в текущее местоположение.
Предположение о том, что орбиты планет могут изменяться, не было новым. Такая гипотеза выдвигалась еще в 1980-е годы. Впрочем, ее сразу отвергли: если причины, по которым планета может начать смещаться, еще были понятны, то объяснить, что может заставить ее остановиться, было невозможно.
Планетная миграция происходит, когда гравитация растущей планеты начинает все сильнее притягивать окружающий газ из протопланетного диска. Газ сопротивляется. При этом газ внутри орбиты, вращающийся быстрее, тянет планету вперед, а газ с внешней стороны орбиты, находящийся дальше в диске и вращающийся медленнее, влечет ее назад, тормозя движение. Поскольку планета не испытывает воздействие давления газа, газ в непосредственной близости от ее поверхности также становится фактором замедления. В результате тяга в обратном направлении оказывается сильнее, планета теряет энергию и перемещается ближе к звезде.