chitay-knigi.com » Домоводство » Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры - Алекс Беллос

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 16 17 18 19 20 21 22 23 24 ... 95
Перейти на страницу:

длина электрических кабелей = k (численность населения)0,83

При увеличении размера города в два раза количество автозаправочных станций и длина электрических кабелей на душу населения могут сократиться на 15 процентов. Другими словами, в городах имеет место математически прогнозируемая экономия от масштаба — и это происходит во всем мире. «Японские города развивались абсолютно независимо от европейских и американских городов, тем не менее закон масштабирования действует [в каждой стране], — говорит Уэст. — Это наводит на мысль о существовании некой универсальной движущей силы». Уэст убежден, что степенные законы действуют в городах по той же причине, что и в мире животных. Город — это и транспортная сеть. Подобно тому как кровеносная система обеспечивает перемещение крови по толстым, а затем по все более тонким сосудам, города тоже распределяют ресурсы по сети разветвляющихся дорог, кабелей и труб.

Мы сами решаем, где нам жить, на что тратить деньги и как расходовать свое время. Тем не менее, если взглянуть на наше коллективное поведение сквозь призму чисел, становится очевидным, что оно вполне предсказуемо и подчиняется простым, взаимно совместимым математическим законам. Мы так распределены по земному шару, что в 30 процентах больших и малых городов численность населения начинается с единицы, размер городов в целом обратно пропорционален их номеру в упорядоченном по численности населения списке и все города являются версиями друг друга, образованными по принципу степенного масштабирования. Возможно, в чем-то этот мир сложен. Но в чем-то — достаточно прост.

Числа — незаменимый инструмент, помогающий нам понять мир, в котором мы живем. То же самое можно сказать о фигурах. Именно изучение одной из фигур дало начало развитию западной математики.

3. Любовные треугольники

Автор исследует треугольники. Призрачный мир древнегреческой геометрии приводит его сначала к колодцу, а затем на вершину самой высокой горы мира

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Роб Вудолл — коллекционер геодезических знаков. В этом он преуспел как никто другой. Геодезические знаки представляют собой бетонные сооружения высотой до пояса, которыми обозначаются базисные точки национальной геодезической сети, использовавшейся в свое время картографами и топографами. Если вы когда-либо бывали в сельских районах Великобритании, то наверняка видели эти сооружения. Они, как правило, расположены на вершинах холмов — как трофей в конце восхождения. За период с 1936 по 1962 год Управление геодезии и картографии установило более 6500 таких знаков, 6200 из них сохранились до настоящего времени. По посещению, или «коллекционированию», геодезических знаков проводятся соревнования. На счету 50-летнего Роба Вудолла уже 6155 знаков — другими словами, почти все[56]. На данный момент он опережает ближайшего соперника почти на тысячу знаков.

В начале своего увлечения геодезическими знаками Роб раз в две недели устраивал экспедицию, уезжая из дома в пятницу вечером и возвращаясь в понедельник утром. Геодезические знаки размещены приблизительно в 5 километрах друг от друга, поэтому, действуя оперативно, Боб мог обойти примерно 50 знаков за одни выходные. При удачном стечении обстоятельств эти сооружения располагались у обочины дороги, где он мог припарковать автомобиль. Однако в большинстве случаев геодезические знаки находились вдали от дорог или пешеходных троп и были скрыты в зарослях можжевельника, куманики и прочих колючих кустов. Для того чтобы не возвращаться на работу с ободранными до крови руками, Боб стал брать с собой садовые ножницы.

Геодезические знаки — это реликвии нашего технологического наследства, такие же элементы ландшафта, как средневековые крепости или прямые римские дороги. Робу нравится их коллекционировать, поскольку благодаря этому он путешествует по красивым местам, удовлетворяя свою тягу к приключениям и получая от этого огромное удовольствие. Он совершал ночные переходы по фермерским полям, побывал на страусиной ферме и потратил три года на переговоры с одним землевладельцем, чтобы добиться у него разрешения посмотреть геодезический знак, расположенный на его земельном участке. Мне тоже нравятся геодезические знаки. Они олицетворяют собой величие треугольника — фигуры, которая изменила мир.

Числа появились около 8000 лет назад, а математика возникла в Египте примерно в 600 году до нашей эры.

Все началось с публичной демонстрации способа измерения высоты пирамид. Греческий мыслитель Фалес показал, как определить высоту Великой пирамиды в Гизе, не взбираясь на нее. Сначала он установил на земле шест, который вместе с тенью образовал две стороны треугольника, как показано на представленном ниже рисунке. Пирамида со своей тенью тоже создавала треугольник. Гениальность Фалеса состояла в том, что он понял: хотя эти два треугольника существенно разнятся по размерам, у них одинаковая форма, поскольку солнечные лучи падают параллельно друг другу. Это означало, что на основании высоты маленького треугольника можно рассчитать высоту большого. Если говорить в современных терминах, Фалес понял следующее:

Красота в квадрате. Как цифры отражают жизнь и жизнь отражает цифры

Высоту шеста и длину его тени измерить не составляет труда. Расстояние от центра основания пирамиды до конца ее тени измерить непосредственно нельзя, поскольку этому мешает сама пирамида[57]. Возможно, прежде чем делать расчеты, Фалес подождал, когда солнечные лучи будут направлены перпендикулярно грани пирамиды, так как в этот момент расстояние от центра пирамиды до ее грани равно половине длины стороны пирамиды. Учитывая, что в приведенном выше уравнении три значения были известны, Фалес смог вычислить оставшееся значение — высоту пирамиды.

1 ... 16 17 18 19 20 21 22 23 24 ... 95
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности