chitay-knigi.com » Домоводство » Вечность. В поисках окончательной теории времени - Шон Кэрролл

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 118 119 120 121 122 123 124 125 126 ... 161
Перейти на страницу:

Наш сопутствующий объем пространства, строго говоря, не является замкнутой системой. Если посадить наблюдателя на воображаемый забор, то он будет замечать разнообразные частицы, прилетающие на наш участок и улетающие с него. Однако в среднем внутрь и наружу будет проходить одно и то же число однотипных частиц, и в совокупности они будут практически неразличимы. (Постоянство космического микроволнового фона убеждает нас, что Вселенная остается однородной и за пределами нашего сопутствующего объема, пусть мы и не знаем, как далеко это единообразие простирается.) Таким образом, с практической точки зрения вполне допустимо считать наш сопутствующий объем замкнутой системой. В действительности он не замкнут, но эволюционирует по сценарию замкнутой системы: никакого важного влияния снаружи, сказывающегося на том, что происходит внутри, не наблюдается.

Сохранение информации в расширяющемся пространстве—времени

Если наш сопутствующий объем соответствует приблизительно замкнутой системе, то на следующем шаге мы должны подумать о его пространстве состояний. Общая теория относительности утверждает, что само пространство — сцена, на которой происходит движение и взаимодействие частиц, — с течением времени эволюционирует. Из-за этого определение пространства состояний становится более изощренной задачей, чем можно было бы представить в фиксированном пространстве—времени. Большинство физиков соглашаются с тем, что в ходе эволюции Вселенной информация сохраняется, но как это работает в космологическом контексте, пока непонятно. Главная проблема заключается в том, что по мере расширения Вселенной в нее помещается все больше и больше вещества, поэтому — пусть это наивно — создается впечатление, что пространство состояний также должно расти. Это вопиющее противоречие, никак не согласующееся с обычными правилами обратимой, сохраняющей информацию физики, где пространство состояний зафиксировано раз и навсегда.

Для того чтобы разрешить это противоречие, начать нужно с наилучшим из имеющихся на данный момент описанием фундаментальной природы материи, которое предоставляет нам квантовая теория поля. Поля вибрируют самыми разными способами, а мы воспринимаем вибрацию как частицы. Поэтому когда мы спрашиваем: «Каково пространство состояний в этой конкретной теории поля?», в действительности нам необходимо перечислить все возможные способы вибрации полей в этой теории.

Любую возможную вибрацию квантового поля можно считать суммой вибраций с разными фиксированными длинами волн — так же, как любой конкретный звук можно разложить на комбинацию нескольких нот с определенными частотами. Вы можете подумать, что допустимы волны с любыми возможными длинами, но в действительности существуют ограничения. Планковская длина (крохотное расстояние, равное 10–33 сантиметра), при которой важную роль начинает играть квантовая гравитация, задает нижний предел допустимой длины волны. При расстояниях, меньших, чем это, пространство— время само по себе теряет привычное значение, а энергия волны (которая тем больше, чем меньше длина волны) становится такой большой, что волна попросту коллапсирует в черную дыру.

Аналогично, существует и верхний предел допустимой длины волны, который определяется размером сопутствующего объема. Дело не в том, что вибрации с большими длинами волн не могут существовать — просто они не имеют никакого значения. Если длина волны превышает размер нашего объема, то, по сути, ее можно смело считать эффективно постоянной во всей наблюдаемой Вселенной.

Таким образом, кажется логичным сделать вывод о том, что «пространство состояний наблюдаемой Вселенной» состоит из «вибраций во всех возможных квантовых полях при условии, что соответствующая длина волны больше планковской длины и меньше размера нашего сопутствующего объема». Однако проблема в том, что это пространство состояний по мере расширения Вселенной изменяется. Наш объем со временем увеличивается, а планковская длина остается постоянной. В самые ранние времена Вселенная была очень молода и расширялась чрезвычайно быстро, а наш объем был относительно небольшим (насколько небольшим, зависит от деталей эволюции ранней Вселенной, которые нам неизвестны). В то время во Вселенной умещалось совсем немного вибраций. Сегодня длина Хаббла стала просто огромной — примерно в 1060 раз больше планковской длины, и число допустимых вибраций теперь невероятно велико. Продолжая эту мысль, добавим, что совсем не удивительно, что энтропия ранней Вселенной была мала, ведь тогда была мала и максимально допустимая энтропия Вселенной, ведь максимально допустимая энтропия возрастает по мере расширения Вселенной и увеличения пространства состояний.

Однако если пространство состояний со временем изменяется, то, определенно, эволюция не может обеспечивать сохранение информации и обратимость. Если сегодня возможных состояний больше, чем было вчера, и два разных начальных состояния всегда эволюционируют в два разных конечных состояния, то какие-то из сегодняшних состояний должны были появиться ниоткуда. Это означает, что в целом эволюцию невозможно повернуть вспять. Во всех стандартных обратимых законах физики, с которыми мы давно и близко знакомы, фигурируют пространства состояний, зафиксированные раз и навсегда, а не меняющиеся с течением времени. Конфигурация внутри пространства будет эволюционировать, но само пространство состояний никогда не меняется.

Вечность. В поисках окончательной теории времени

Рис. 13.2. Чем больше расширяется Вселенная, тем больше самых разных типов волн она может вместить. Может произойти больше разных событий, то есть создается впечатление, что пространство состояний увеличивается.

Итак, мы столкнулись с дилеммой. Практическое правило квантовой теории поля в искривленном пространстве—времени подразумевает, что пространство состояний увеличивается с расширением Вселенной, но идеи, на которых все это базируется, — квантовая механика и общая теория относительности — строго придерживаются принципа сохранения информации. Очевидно, кто-то должен уступить.

Ситуация напоминает загадку с потерей информации в черных дырах. Тогда мы (а точнее, Стивен Хокинг) воспользовались квантовой теорией поля в искривленном пространстве—времени, чтобы получить результат — испарение черных дыр в хокинговское излучение, — свидетельствующий о том, что информация теряется или, по крайней мере, искажается. А теперь мы рассуждаем о космологии, где правила квантовой теории поля в расширяющейся Вселенной подразумевают фундаментально необратимую эволюцию.

Я буду предполагать, что эта загадка однажды разрешится в пользу сохранения информации, ведь даже Хокинг теперь придерживается мнения, что в черных дырах так и происходит (хотя с ним согласны, конечно, не все). Ранняя Вселенная и поздняя Вселенная — это просто две разные конфигурации одной и той же физической системы, эволюционирующей согласно обратимым фундаментальным законам в рамках неизменного пространства возможных состояний. Отзываясь об энтропии системы как о «большой» или «маленькой», правильно сравнивать ее с максимально возможной энтропией вообще, а не с наибольшей энтропией, совместимой с определенными свойствами, которыми система обладает в данный конкретный момент. Если мы смотрим на контейнер с газом и обнаруживаем, что весь газ собрался в одном углу, то мы не говорим, что «это высокоэнтропийная конфигурация при условии, что мы ограничиваемся рассмотрением исключительно тех конфигураций, в которых весь газ собрался в этом углу». Мы говорим: «Это очень низкоэнтропийная конфигурация, и, вероятно, этому существует какое-то объяснение».

1 ... 118 119 120 121 122 123 124 125 126 ... 161
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности