Шрифт:
Интервал:
Закладка:
Улучшение качества запасных белков
Запасные белки основных культурных видов кодируются семейством близкородственных генов. Накопление запасных белков семян — сложный биосинтетический процесс. Первая генно-инженерная попытка улучшения свойства одного растения путем введения гена запасного белка от другого была, проведена Д. Кемпом и Т. Холлом в 1983 г. в США. Ген фазеолина бобов с помощью Ti-плазмиды был перенесен в геном подсолнечника. Результатом этого опыта было лишь химерное растение, получившее название санбин. В клетках подсолнечника были обнаружены иммунологически родственные фазеолиновые полипептиды, что подтверждало факт переноса гена между растениями, относящимися к различным семействам
Позднее ген фазеолина был передан клеткам табака: в растениях-регенерантах ген экспрессировался во всех тканях, хотя и в малых количествах. Неспецифическая экспрессия фазеолинового гена, так же как и в случае переноса его в клетки подсолнечника, сильно отличается от экспрессии этого гена в зрелых семядолях бобов, где фазеолин составлял 25–50 % от общего белка. Этот факт указывает на необходимость сохранения и других регуляторных сигналов этого гена при конструировании химерных растений и на важность контроля экспрессии генов в процессе онтогенеза растений.
Ген, кодирующий запасной белок кукурузы — зеин, после интеграции его в Т-ДНК был перенесен в геном подсолнечника следующим образом. Штаммы агробактерий, содержащие Ti-плазмиды с геном зеина, использовали для индукции опухолей в стеблях подсолнечника. Некоторые из полученных опухолей содержали мРНК, синтезируемые с генов кукурузы, что дает основание рассматривать эти результаты как первое доказательство транскрипции гена однодольного растения в двудольном. Однако присутствие зеинового белка в тканях подсолнечника не обнаружилось.
Более реальной задачей для генетической инженерии считается улучшение аминокислотного состава белков. Как известно, в запасном белке большинства злаковых наблюдается дефицит лизина, треонина, триптофана, у бобовых — метионина и цистеина. Введение в эти белки дополнительных количеств дефицитных аминокислот могло бы ликвидировать аминокислотный дисбаланс. Методами традиционной селекции удалось существенно повысить содержание лизина в запасных белках злаковых. Во всех этих случаях часть проламинов (спирторастворимые запасные белки злаковых) заменялась другими белками, содержащими много лизина. Однако у таких растении уменьшались размеры зерна и снижалась урожайность. По-видимому, проламины необходимы для формирования нормального зерна, и их замена другими белками отрицательно влияет на урожайность. Учитывая это обстоятельство, для улучшения качества запасного белка зерновых нужен такой белок, который не только отличался бы высоким содержанием лизина и треонина, но и мог полноценно заменить определенную часть проламинов при формировании зерна.
Растения могут производить и белки животного происхождения. Так, встраивание в геном растений Arabidopsis thaliana и Brassica napus химерного гена, состоящего из части гена запасного 25-белка арабидопсиса и кодирующей части для нейропептида — энкефалина, приводило к синтезу химерного белка до 200 нг на 1 г семени. Два структурных белковых домена были связаны последовательностью, узнаваемой трипсином, что давало возможность в дальнейшем легко изолировать чистый энкефалин.
В другом эксперименте удалось после скрещивания трансгенных растений, в одном из которых был встроен ген гамма-субъединицы, а во втором — ген каппа-субъединицы иммуноглобулина, получить у потомства экспрессию обеих цепей. В результате растение формировало антитела, составляющие до 1,3 % суммарного белка листьев. Также было показано, что в растениях табака могут собираться полностью функциональные секреторные моноклональные иммуноглобулины. Секреторные иммуноглобулины обычно выделяются в ротовую полость и желудок человека и животных и служат первым барьером на пути кишечных инфекций. В упомянутой выше работе получили продукцию в растениях моноклональных антител, которые были специфичны для Streptococcus mutans — бактерий, вызывающих зубной кариес. Предполагается, что на основе таких моноклональных антител, продуцируемых трансгенными растениями, удастся создать действительно антикариесную зубную пасту. Из других белков животного происхождения, которые представляют интерес для медицины, показана продукция в растениях человеческого β-интерферона.
Разработаны также подходы, позволяющие получать бактериальные антигены в растениях и использовать их в качестве вакцин. Получен картофель, экспрессирующий олигомеры нетоксичной субъединицы β-токсина холеры. Эти трансгенные растения могут быть использованы для получения дешевой вакцины от холеры.
Жиры
Важнейшим сырьем для получения разного рода химических веществ являются жирные кислоты — основной компонент растительного масла. По своей структуре это углеродные цепи, которые обладают различными физико-химическими свойствами в зависимости от своей длины и степени насыщения углеродных связей. В 1995 году была закончена экспериментальная проверка и получено разрешение от федеральных властей США на выращивание и коммерческое использование трансгенных растений рапса с измененным составом растительного масла, включающего вместе с обычными 16- и 18-членными жирными кислотами также и до 45 % 12-членной жирной кислоты — лаурата. Это вещество широко используется для производства стиральных порошков, шампуней, косметики.
Экспериментальная работа заключалась в том, что был клонирован ген специфической тиоэстеразы из растения Umbellularia califomica, где содержание лаурата в жире семян достигало 70 %. Структурная часть гена этого фермента под контролем промотора-терминатора гена белка, специфического для ранней стадии семяобразования, была встроена в геном рапса и арабидопсиса, что и привело к увеличению содержания лаурата в масле этих растений.
Из других проектов, связанных с изменением состава жирных кислот, можно упомянуть работы, ставящие целью повышение или снижение содержания ненасыщенных жирных кислот в растительном масле. Интересными представляются эксперименты с петрозелиновой кислотой — изомером олеиновой кислоты, где двойная связь находится за шестым углеродным членом. Эта жирная кислота входит в со став масла кориандра и определяет его более высокую температуру плавления (33 °C), в то время как при наличии олеиновой кислоты температура плавления составляет только 12 °C. Предполагается, что после переноса генов, определяющих синтез петрозелиновой кислоты, в растения — продуценты растительного масла удастся производить диетический маргарин, содержащий ненасыщенную жирную кислоту. Кроме того, из петрозелиновой кислоты очень легко получать лаурат путем окисления озоном. Дальнейшее изучение специфики биохимического синтеза жирных кислот, по-видимому, приведет к возможности управлять этим синтезом с целью получения жирных кислот различной длины и различной степени насыщения, что позволит значительно изменить производство детергентов, косметики, кондитерских изделий, затвердителей, смазочных материалов, лекарств, полимеров, дизельного топлива и многого другого, что связано с использованием углеводородного сырья.
Полисахариды
Проводится работа по созданию трансгенных растений картофеля и других крахмалнакапливающих культур, в которых это вещество будет находиться в основном в виде амилопектина, то есть разветвленной форме крахмала, или же в основном только в виде амилозы, то есть линейных форм крахмала.