chitay-knigi.com » Историческая проза » Эйнштейн. Его жизнь и его Вселенная - Уолтер Айзексон

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 106 107 108 109 110 111 112 113 114 ... 185
Перейти на страницу:

Еще более известный и еще более взрывоопасный результат Гейзенберг получил двумя годами позже, в 1927 году. Это принцип неопределенности. Для широкой публики он представляется одной из наиболее известных и загадочных составляющих квантовой механики.

Невозможно, утверждал Гейзенберг, знать одновременно точное значение координаты частицы, такой как движущийся электрон, и точное значение ее импульса. (Импульс равен массе частицы, помноженной на ее скорость.) Чем точнее измеряется координата частицы, тем меньше точность, с которой можно измерить ее импульс. И в формулу, определяющую возможный компромисс, входит (что неудивительно) постоянная Планка.

Сам акт наблюдения, то есть процесс, при котором фотоны, электроны, любые другие частицы или волны энергии взаимодействуют с объектом, влияет на результат наблюдения. Но Гейзенберг пошел еще дальше. У электрона нет определенной координаты или траектории до тех пор, пока мы его не наблюдаем. Это свойство нашей Вселенной, а не просто недостаток, присущий наблюдению, или дефект измерительной аппаратуры.

Принцип неопределенности, такой простой, но тем не менее такой удивительный, был осиновым колом, вбитым в сердце классической физики. Этот принцип утверждает: за пределами наших наблюдений объективной реальности нет, у частицы даже нет независимой от наблюдения координаты. Кроме того, принцип Гейзенберга и другие положения квантовой механики подрывают веру в строгое выполнение во вселенной принципа причинности. Когда Эйнштейн написал, что у него есть возражения по этому поводу, Гейзенберг резко ответил: “Я верю, что индетерминизм, то есть отказ от неукоснительного требования причинности, необходим”59.

Когда в 1926 году Гейзенберг приехал в Берлин прочесть лекцию, он впервые встретился с Эйнштейном. В один из вечеров Эйнштейн пригласил его к себе домой, где они вполне по-дружески продолжили свой спор. Это было зеркальное отражение тех споров, которые Эйнштейн в 1905 году мог бы вести с консерваторами, у которых вызывало сопротивление отрицание эфира.

“Мы не можем наблюдать орбиты электронов внутри атомов, – говорил Гейзенберг, – а правильная теория должна строиться непосредственно на наблюдаемых величинах”.

“Но не верите же вы серьезно, – протестовал Эйнштейн, – что ничто, кроме наблюдаемых величин, не должно входить в физическую теорию?”

“Но ведь именно это вы сделали в теории относительности?” – спросил слегка удивленный Гейзенберг.

“Возможно, я и использовал подобные рассуждения, – заметил Эйнштейн, – но это все равно чепуха”60.

Иными словами, взгляды Эйнштейна эволюционировали.

Похожий разговор состоялся у Эйнштейна с его другом Филиппом Франком в Праге. “В физике появилась новая мода”, – жаловался Эйнштейн. Согласно этой моде определенные величины наблюдать нельзя, а поэтому их нельзя считать реальными.

“Но эту моду, – запротестовал Франк, – ввели именно вы в 1905 году!”

Ответ Эйнштейна: “Хорошую шутку не надо повторять слишком часто”61.

В середине 1920-х годов достижения теоретиков – Нильса Бора и его коллег, включая Гейзенберга, – послужили основой того, что позднее было названо копенгагенской интерпретацией квантовой механики. Свойство тела можно рассматривать только в контексте того, каким образом это свойство наблюдается или измеряется. Разного рода измерения не просто представляют собой один из возможных вариантов описаний единой картины, а являются дополнительными по отношению друг к другу.

Другими словами, нет единой основополагающей реальности, независимой от наших наблюдений. “Неправильно думать, что задача физики – выяснить, чем является природа, – утверждал Бор. – Физика выясняет, что мы можем сказать о природе”62.

Поскольку эту так называемую “лежащую в основе всего реальность” обнаружить нельзя, значит, нет строгого детерминизма в классическом понимании этого термина. “Когда человек хочет рассчитать “будущее”, основываясь на “настоящем”, результат может быть только статистическим, – говорил Гейзенберг, – поскольку узнать все детали настоящего нельзя”63.

Когда весной 1927 года квантовая революция достигла апогея, Эйнштейн воспользовался 200-й годовщиной со дня смерти Ньютона, чтобы защитить классический взгляд на механику, основанную на причинности и достоверности. Двадцатью годами ранее Эйнштейн с юношеской беззаботностью обрушил многие из столпов, на которых зиждилась вселенная Ньютона, среди них и абсолютные пространство и время. Но теперь он был защитником установленного ранее порядка и Ньютона.

Кажется, сказал Эйнштейн, что из новой квантовой механики исчезли жесткие причинно-следственные связи. “Но последнее слово еще не сказано, – возразил он. – Возможно, сам дух метода Ньютона даст нам силы восстановить союз между физической реальностью и основополагающей характеристикой его учения – строгим выполнением принципа причинности”64.

Эйнштейн до конца так и не изменил свое мнение, даже когда эксперименты раз за разом доказывали справедливость квантовой механики. Он оставался реалистом, символом веры которого была объективная реальность, уходившая корнями в достоверность, существующую вне зависимости от того, можно ли ее наблюдать.

“Он не играет в кости”

Что же заставило Эйнштейна уступить революционную тропу молодым радикалам и занять охранительную позицию?

Молодой эмпирик, находившийся под впечатлением трудов Маха, Эйнштейн был готов отрицать все, что невозможно наблюдать. В это число входили такие понятия, как эфир, абсолютные время и пространство, синхронность. Но успех общей теории относительности убедил его, что скептицизм Маха, хотя и может быть полезен, когда надо избавиться от ненужных понятий, не слишком помогает при построении новых теорий.

“Он окончательно загнал старую клячу Маха”, – жаловался Эйнштейн Мишелю Бессо, прочитав статью, написанную их общим другом.

“Мы не должны обижать бедную лошадку Маха, – отвечал Бессо. – Разве не она позволила пройти извилистый путь к теории относительности? И кто знает, может, и в случае этого мерзкого кванта она тоже сможет пронести Дон Кихота а-ля Эйнштейн через все преграды!”

“Ты знаешь, что я думаю об этой лошадке Маха? – написал Эйнштейн в ответ. – Она не может произвести на свет что-нибудь живое. Она может только истребить вредных паразитов”65.

В зрелые годы Эйнштейн еще больше утвердился во мнении, что объективная “реальность” существует, можем мы ее наблюдать или нет. Он раз за разом повторял, что вера в существование внешнего мира, не зависящего от наблюдателя, является основой любой науки66.

Кроме того, Эйнштейн сопротивлялся приятию квантовой механики, поскольку она порывала со строгими причинно-следственными связями. Вместо этого новая теория описывала реальность в терминах индетерминизма, неопределенности и вероятности. Истинный последователь Юма не стал бы об этом беспокоиться. Нет другой причины, кроме, возможно, метафизической веры или укоренившейся привычки, считать, что природа оперирует абсолютно достоверными величинами. Столь же разумно, хотя, вероятно, и не столь привычно, полагать, что некоторые вещи происходят случайно. И конечно, все больше свидетельств указывали на то, что на субатомном уровне дело обстоит именно так.

1 ... 106 107 108 109 110 111 112 113 114 ... 185
Перейти на страницу:

Комментарии
Минимальная длина комментария - 25 символов.
Комментариев еще нет. Будьте первым.
Правообладателям Политика конфиденциальности